Scheduling Software Construction Utilizing the Sensor Network in Plant Factory

Masaki Kato¹, Takeshi Hashimoto¹, Tsutomu Saito¹, Shunichi Takahira¹, Tomohiro Kawakita², Masahide Isozaki³, Ken Suzuki³, Atsushi Hashimoto⁴, Takaharu Kameoka⁴

¹Department of Operations Research Dept. KOZO KEIKAKU ENGINEERING Inc., 4-5-3 Chuo, Nakano-ku, Tokyo 164-0011, Japan, E-mail masaki_k@kke.co.jp
²Department of Planning & Development Dept. Chitose Industrial Co., Ltd., 4-9-56 Yokoshojicho, Higashiosaka, Osaka 579-8063, Japan E-mail: kawakita@chitose-kk.co.jp
³Department of Agricultural Research Institute, Mie Prefecture, 530 Ureshinokawagitacho, Matsusaka, Mie 515-2316, Japan E-mail: isozam00@pref.mie.jp
⁴Department of Sustainable Resource Sciences, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan, E-mail: kameoka@mie-u.ac.jp

ABSTRACT

The sunlight-based plant factory supported by the Ministry of Agriculture, Forestry and Fisheries (MAFF), which has a potential to achieve long-term stable tomato production under global climate change, is not yet able to produce tomatoes with the quality meeting the consumer’s preference. Furthermore, even though the sunlight-based factories use less electricity than other factories, they still require a lot of energy to keep optimizing the growing environments. To solve these problems, we started creating a next-generation technology for plant factory system by utilizing the information and communication technology (ICT). The proposed system can manage the product quality demand as a dependent variable, make it possible to reduce electric power consumed to maintain the temperature, and make a stable production of a certain level of quality, which can be determined by counting the consumer’s preference backward. We have successfully created the scheduling software used in the system.

Keywords: Agricultural and bio-systems, networked sensor system, process control, Japan

Masaki Kato, Takeshi Hashimoto, Tsutomu Saito, Shunichi Takahira, Tomohiro Kawakita, Masahide Isozaki, Ken Suzuki, Atsushi Hashimoto, Takaharu Kameoka. “Scheduling software construction utilizing the sensor network in plant factory”. EFITA-WCCA-CIGR Conference “Sustainable Agriculture through ICT Innovation”, Turin, Italy, 24-27 June 2013. The authors are solely responsible for the content of this technical presentation. The technical presentation does not necessarily reflect the official position of the Internation Commission of Agricultural and Biosystems Engineering (CIGR) and of the EFITA association, and its printing and distribution does not constitute an endorsement of views which may be expressed. Technical presentations are not subject to the formal peer review process by CIGR editorial committees; therefore, they are not to be presented as refereed publications.
1. INTRODUCTION

In 2011, the Demonstration and Training Center for Greenhouse Agricultural Production equipped with the sunlight-based plant factory supported by the Ministry of Agriculture, Forestry and Fisheries (MAFF) has been developed in Central Mie. This center has been managed by Mie Prefectural Agricultural Research center. The plant factory was constructed to achieve the yearly-stable supply of the tomato cultivation with the productivity growth and quality improvement. In the present situation, however, the plant factory is not able to produce such tomatoes as possess the quality which meets the consumer’s preference while it has a potential to allow long-term stable tomato production to be maintained under global climate change. Furthermore, even though the sunlight-based factories use less electricity than totally-controlled factories, they still require a lot of energy to keep optimizing the growing environment in coordination with many environmental control equipments. We then studied a next-generation scheduling software by utilizing the information and communication technology (ICT) in order to solve the above problems.

2. MATERIALS AND METHODS

The proposed system can manage the product quality demand as a dependent variable, make it possible to reduce electricity consumption, and make a stable production of a certain level of quality, which can be determined by counting the consumer’s preference backward.

The next-generation technology has the following features.

1) Cultivation management system, which enables us to control the product quality.
2) Optimized growing scheduling system to raise efficiency and simultaneously pursue profitability.
3) Efficient production with a few resources such as space, energy and human resources based on the optimized schedule.

This new system could reduce everyday operating cost through resource saving and it is also expected to facilitate prompt dissemination of plant factory, utilizing the information obtained from the sensor network.

3. RESULTS & DISCUSSION

3.1 The result in the 2012 Fiscal Year

In this research, we established a prototype of the scheduling method. To achieve it, we constructed a prototype of the forecasting model of the growing period only based on thermal time. At the same time, a miniature size wireless sensor for temperature, humidity and light intensity was developed for measuring canopy photosynthesis. The...
allocation of miniature sensors in the factory is also completed and the development of the scheduling software is also completed.

3.2 Forecasting Model of the Growing Period

For the forecasting model, we used the method referred in Kanagawa Agricultural Technology Center, 2010. It is known that the growth speed can be practically decided by temperature (Phenology). In this view, we calculated the accumulated temperatures necessary for tomato to reach the main developing stages. These temperatures are calculated for each season and time, and we use them to design the sowing plan for the growing system, which uses the cultivation methods, low node-order pinching and high density planting. Based on the manual (Kanagawa Agricultural Technology Center, 2010) and the cultivation data of a plant factory Mie base (Figure 1), the accumulated temperature (°C) at the start of Transplanting for tray, the start of Picking, and the end of Picking is corrected to 476, 1900, and 2650, respectively. Based on these, we built the “Forecasting Model of the Growing Period” used for a sowing plan.

<table>
<thead>
<tr>
<th>Process</th>
<th>Sowing seed</th>
<th>Transplanting for tray</th>
<th>Planting</th>
<th>Training</th>
<th>Flowering (1st truss)</th>
<th>Flowering (2nd truss)</th>
<th>Flowering (3rd truss)</th>
<th>Pinching</th>
<th>Start of picking time</th>
<th>End of picking time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Plant model</td>
<td>Plant community model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical Control Point</td>
<td>○</td>
</tr>
<tr>
<td>Sample of Schedule (Summer)</td>
<td>Date</td>
<td>7/4</td>
<td>7/25</td>
<td>8/2</td>
<td>8/15</td>
<td>8/23</td>
<td>9/1</td>
<td>9/9</td>
<td>9/16</td>
<td>10/24</td>
</tr>
<tr>
<td>The growth days</td>
<td>0</td>
<td>21</td>
<td>29</td>
<td>36-39</td>
<td>42</td>
<td>50</td>
<td>59</td>
<td>67</td>
<td>74</td>
<td>112</td>
</tr>
<tr>
<td>Sample of Schedule (Winter)</td>
<td>Date</td>
<td>10/3</td>
<td>10/25</td>
<td>11/4</td>
<td>11/18</td>
<td>12/5</td>
<td>12/20</td>
<td>1/23</td>
<td>3/26</td>
<td></td>
</tr>
<tr>
<td>The growth days</td>
<td>0</td>
<td>22</td>
<td>32</td>
<td>36-39</td>
<td>46</td>
<td>63</td>
<td>78</td>
<td>112</td>
<td>174</td>
<td></td>
</tr>
<tr>
<td>Investigation item</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>0</td>
<td>1.1~1.3</td>
<td>1.1~1.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Electrical conductivity (dS/m)</td>
<td>1.8</td>
<td>1.1~1.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Quantity of the supply</td>
<td>0</td>
</tr>
<tr>
<td>EC of drained nutrient solution</td>
<td>0</td>
</tr>
<tr>
<td>Stem diameter</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 1 Cultivation Process for Mie prefectural Agricultural Research center

3.3 Miniature Size Wireless Sensor

We developed a small and low-power consumption radio sensor, in which temperature, humidity, and illumination functions are integrated. It also carries a 920 MHz band transceiver and can realize the stable data communications in an available light type.

C0277
plant factory. Moreover, it is waterproofed and can be installed in plant community without any loss of stability.

Wireless transmission method
1) ISM band (ARIB STD-T108) using 920MHz
2) Transmission speed 40kbps
3) Maximum transmission output -12dBm
4) Reception level - 105dBm
5) Sensor sampling 5sec
6) Communication report space 5min. (the mean of 60 times of samplings)
7) RF communication time 10ms
8) Consumption electric current 17mA mean at RF movement
9) Prospect outreach around 200m
Figure 3 is a whole picture of the plant factory in Mie Prefecture. We located the wireless temperature-humidity, the illumination sensor which we developed this time in a tomato plant factory. Figure 4 shows the placement of 14 wireless sensors installed in the plant factory.

![Diagram showing the placement of wireless sensors in the plant factory.](image)

Figure 4 Locating 14 places in a figure of placement of wireless temperature-humidity, the illumination sensor in a plant factory

![Images showing miniature size wireless sensors located in the upper, center and bottom part of the tomato plant community.](image)

Figure 5 The miniature size wireless sensors located in the upper, center and bottom part of the tomato plant community
Figure 5 shows the sensors located in the upper, center, and bottom part of the tomato plant community. The data which we acquired are sent to the base station by 920MHz wireless transmission. The data which we acquired every five seconds are sent to the sensor base station as mean data of five minutes (60 times of total). Figure 6 shows 2-day acquisition data, showing the changes of temperature, humidity and illumination well. It also shows that the light hardly arrives at the sensors located in the bottom.

3.4 Scheduling Software

The scheduling software displays the schedule and the environment information from sensors (See Figure 7). This software consists of two models, the forecasting model of the growing period and the scheduling model. The scheduling model is designed to minimize the distribution of the yield for each season. The model handles planting dates as variables and the followings as constraints.

1) The total yield more than fixed
2) Prohibit the concurrent use of the same equipment
3) Prohibit the overlap of growing periods
4) Prohibit a void period in one cycle.
5) Prohibit the harvest in a specified period
We adopted the multi-start greedy method in consideration of the future constraints extension and computation time. From now on, we will perform gap comparison with the exact solution and, if needed, change a technique.

![Scheduling system screen](image)

Figure 7 Scheduling system screen

In the present research, we try to upgrade a growth model, upgrade a scheduler and analyze the electric power of the plant factory facilities.

4. **ACKNOWLEDGEMENTS**

We would like to thank the Strategic Information and Communications R&D Promotion Programme (SCOPE) of the Ministry of Internal Affairs and Communications, Japan for the financial supports to this project.

5. **REFERENCES**

Tomohiro Kawakita. 2013. Miniature size three modes wireless sensor development to link to management in a plant factory growth schedule: Organized Session in SICE 2013

